Self-pairings on supersingular elliptic curves with embedding degree three

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-pairings on supersingular elliptic curves with embedding degree three

Self-pairings are a special subclass of pairings and have interesting applications in cryptographic schemes and protocols. In this paper, we explore the computation of the self-pairings on supersingular elliptic curves with embedding degree k = 3. We construct a novel self-pairing which has the same Miller loop as the Eta/Ate pairing. However, the proposed self-pairing has a simple final expone...

متن کامل

Constructing Supersingular Elliptic Curves

We give an algorithm that constructs, on input of a prime power q and an integer t, a supersingular elliptic curve over Fq with trace of Frobenius t in case such a curve exists. If GRH holds true, the expected run time of our algorithm is e O((log q)). We illustrate the algorithm by showing how to construct supersingular curves of prime order. Such curves can readily be used for pairing based c...

متن کامل

Bilinear pairings on elliptic curves

We give an elementary and self-contained introduction to pairings on elliptic curves over finite fields. For the first time in the literature, the three different definitions of the Weil pairing are stated correctly and proved to be equivalent using Weil reciprocity. Pairings with shorter loops, such as the ate, atei, R-ate and optimal pairings, together with their twisted variants, are present...

متن کامل

Constructing Pairing-Friendly Elliptic Curves with Embedding Degree 10

We present a general framework for constructing families of elliptic curves of prime order with prescribed embedding degree. We demonstrate this method by constructing curves with embedding degree k = 10, which solves an open problem posed by Boneh, Lynn, and Shacham [6]. We show that our framework incorporates existing constructions for k = 3, 4, 6, and 12, and we give evidence that the method...

متن کامل

Compression of Tate Pairings on Elliptic Curves

In this paper, utilizing maps between cyclic groups contained in a finite field, two efficient methods for compressing a Tate pairing defined on a supersingular elliptic curve with prime characteristic p and MOV degree 3 are presented. They compress a pairing value from a string of length of 6logp bits to ones of 3logp and 2logp bits, respectively, and an implementation for both the compressed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Finite Fields and Their Applications

سال: 2014

ISSN: 1071-5797

DOI: 10.1016/j.ffa.2014.01.013